skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tutunnikov, Ilia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose leveraging strong and ultrastrong light-matter coupling to efficiently generate and exchange nonclassical light and quantum matter states. Two initial conditions are considered: (a) a displaced quadrature-squeezed matter state, and (b) a coherent state in a cavity. In both scenarios, polaritons mediate the dynamical generation and transfer of nonclassical states between light and matter. By monitoring the dynamics of both subsystems, we uncover the emergence of cavity-induced beatings in the collective matter oscillations. The beating period depends on the particle density through the vacuum Rabi splitting and peaks sharply under light-matter resonance conditions. For initial condition (a), nonclassicality is efficiently transferred from matter to photons under strong and ultrastrong coupling. However, for initial condition (b), nonclassical photonic states are generated only in the ultrastrong coupling regime due to the counter-rotating terms, highlighting the advantages of ultrastrong coupling. Furthermore, in the ultrastrong coupling regime, distinctive asymmetries relative to cavity detuning emerge in dynamical observables of both light and matter. The nonclassical photons can be extracted through a semi-transparent cavity mirror, while nonclassical matter states can be detected via time-resolved spectroscopy. This work highlights that polariton states may serve as a tool for dynamically generating and transferring nonclassical states, with potential applications in quantum technology. 
    more » « less